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Quantum double pendulum: Study of an autonomous classically chaotic quantum system
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A numerical study of the quantum double pendulum is conducted. A suitable quantum scaling is found which
allows us to have as the only parameters the ratios of the lengths and masses of the two pendula and a
(quantum gravity parameter containing Planck’s constant. Comparison with classical and semiclassical results
is used to understand the behavior of the energy curves of the levels, to define regimes in terms of the gravity
parameter, and to classify thigesonant interactions among levels by connecting them to various classical
phase space structurggsonance islangls
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I. INTRODUCTION the noncommuting operators in its kinetic enefdy] have

In 1992, J. Ford suggested the double pendulum as a sui p to now made its guantum counterpart not palatable to

; ) > xtensive analysis. The aim of this paper is to propose a
able tsystem ohn vyhm? tg exp(ta)nmtlanta!ly Itlest ghet_abmtyt Olcreasonable ordering giving the proper behaviors for zero
qlugn um ”.“ecl amcst. ?I ESC” de dc as:uca yc aﬂ Ic .SI%/S? avity (the behavior in the high gravity limit does not de-
[1]: as a simple spatially bounded autonomous Hamiltonia end on the orderingand to explore the properties of the

system_ presenting—in its classical version—transition tei enfunctions of the resulting Hamiltonian. The quantum
chaos It agp_eared |dgal to test the consequences of the "’?‘Ck, namics of the double pendulum is analyzed at all values of
chaos in “eigenfunctions, e|genvalues, and time evqu_t|on avity and not only in the high gravity limit where it re-
?r]:esgicghng& ?gguomf z?las;girg;' (:Shlggi itseqnda?]lﬁj;n:g;tlzrr‘]?éggh ces to the trivial case of two coupled harmoni_c oscillators.
analysis shows that the three classical regimes encoun-

greatly improved2]; in partlcqlar arguments have been ad- tered increasing gravity—classical regular motion, “global
vanced to the effect that continuous observation of the quans < 4 scoupled oscillators’— are faithfully mirrored in
tum system would bring its behavior back to the classica he qu’antum system

one [3]. Still the above. mentlongd characteristics of the The present paper is thus organized: Sec. Il presents the
?OUbI? ge.nqtu'lurp mgke Ilt atﬁandliiste f%r achoro;Jgh qu"’méystem, both classical and quantum; Sec. Il introduces and
um study. 1t IS 1ar simpler than other chaolic autonomoUSyig . sses the guantum numerical methods used. Finally, Sec.

s%/ségm:, th?tthht?]"‘? belen StUd'?d n re(t:enté/etatrs,rl]|kelquantum discusses the quantum system properties; first those that
stadia[4], wi eir relevance 1o quantum dot technology, Or .,y e ohtained by semiclassical methods, then those ob-

tained from the quantum simulations, focusing on the differ-

kicked rotort71 and hvd . h fic mi Mnt guantum behavior in the three classical regimes of low
icked rotor[7] and hydrogen in monochromatic microwave ravity (classical regular motion in most of the phase space

gelds[S] have bg_en thefff)cus (t)f mu%h stu?;k/)atr\?hhave almo edium gravity(classical global chaos regimeand high
ecome a paradigm of “quantum chaos,” but they are non{;ravity (regular “coupled oscillators” regime

autonomous.
The relative freedom with which mass and length ratios Il. MODEL: CLASSICAL AND QUANTUM
can be changed in the double pendulum would moreover HAMILTONIANS

allow us to study how the classical transition to chaos is An ideal double pendulum is shown in Fig.11:andl, are

reflected in its quantum counterpart when varying these pa; )
rameters and this may be illustrative of various “quenchingsf’imtercl)zrllgcfgé ?;éhfam)g Ple ?;jufng“f{ ;\i/ln?mz tgri'jr {ESS;%S'
—l2i —i2 1 -

of chaos in systems like, for example, helium itself: the ab-
sence of observed chaos in helium appears to be a cons@—er.‘tal‘% Ejtcitalthantgular mlomentgm otfhthel sy;t}amd LZ.I
quence of the possibility of an adiabatic separation in hyper%::rﬂgjr??ezdgt%] € Wo angies ande,, the classical Hamil-
spherical coordinateg6] so that there are quite good
guantum numbers right up to the present precision of obser- 1 Li 2L41L,( 1+ cose,
vgtions. Different mass fatios would probably break this qua- H= 2M1|§ 1+ p sirfe, T 1+ p sirfe,
sisymmetry; but changing the electron masses would just
result in making the system even more complicated and not 1+ +2ul cose, + ul?
accessible to direct experimental testing. _ 2 (1 + psirte,)

On the other hand, even though the classical double pen-
dulum has often been used as an example of autonomous ~ * M19lil(1 +u)(1 = cosey) + ul[1 - coges + @)}

chaotic systeni9,10], doubts about the proper ordering of (1
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operators af.i:IA_i/ﬁ where the quantum momentum opera-

tors are defined in the usual waAy,: —ifdl dg;. The symme-
trized quantum Hamiltonian then reads

oo L2 El< l+cosg, = < |+cose, )

-— +
1+usirte, | \1+usirte, > 21+ pusirte,

2 1+ p+2ul cose, + ul?2
2 (1 + psirtey)

+ A (1 +p)(1 - cosey) + ul[1 - code + )]} (3

Infinitely many other symmetrizations of the last two ki-

It is possible[9] to scale the system via the adoption of netic terms are possib[@2]; our choice has been dictated by
new adimensional variables: time=tyE/(M4l?) and mo-  the physical argument that for zero gravity the ground state is
menta\;=L;/VEM,l%, whereE is the constant total energy. completely delocalized13]; its energy must therefore be
The scaled Hamiltoniam=H/E then always equals 1 and zero. As we shall see, the chosen symmetrization guarantees

depends only on the gravity parametergM,|,/E and the  that this be the case, even for the truncated basis sets we
ratios| and u: have to use for our numerical simulations.

Classical and quantum adimensional scaled parameters
and variables are related thus:

2
FIG. 1. An ideal double pendulum.

_1 A2 _2>\1>\2< | +cose, ) y=3IE, (4)
2| 1+ usirfe, I 1+ pu Sirfe,
1+up+2ul COS<p2+,u|2} —TA\/o/E
2 + (1 +w(1-cos A =LiV2/E, (5)
| A (- cosey =L

+ ul[1 - cogg + @)1} 2) r=TV2E. (6)

Classical results are presented through Poincaré surfaces

of section(SOS; @n thg present paper I shall only consider Equation(4) means that—for given values bfand u—the
surfaces of section in the,=0,¢,>0,{A;,¢1} plane of  energy levels corresponding to the same classical situation,
which several examples are given in Fig. 8 of Hé. as described by the SOS at a given classical gravity param-
~ For y=0 the total angular momentuiy is conserved, it etery, are to be found on th§y, E} plane along the straight
is therefore one of the two actions of the system and the SO > e E_W?
EOPS'StS of honz??rt]al Imeis; motlor_l tf]l('jstah;\r']a%s at_rot_atl_on, The classical limit is obtained féy— « along such a line;

ut —ase, IS not the angle assoclated 1o thal aclioRrS i means havingMy,l;— while keeping all three the

not constant. The second actidp has instead 0 be o qqical parametetsu, and7 constant. The same result is
calculated numerically[9]. The uniformity of the SOS pizined with the usual “unphysical” limit— 0.

also hides the two different kinds of motion i@,=0:
rotation for |\ <{2[1+u(1-1)?], and libration for

o1 .. (1 121 [Or1 4 ..(1 2121 .
\"2[1+M(1_|)2]<|7\1|< \/2[1*'//«(1"")2]- IIl. NUMERICAL METHODS

For y# 0 we shall here only note two facts. One is the  A. Projection of the double pendulum on a rotor basis
vertical asymmetry of the SOS which is due to the fact that
—following Poincaré prescription— only the orbits crossing to
it with ¢,>0 are shown; the SOS fap,<0 is perfectly
symmetric to it. The other is that foy>[2(1+u+pul)]™
rotation in¢; is no Ionge[lpossible ang, is limited between MMz
tarccogl —[y(1+u+ul)] ™} B = ——— 7)

In quantum mechanics we cannot use the classical scal- v 2m
ing; we instead multiply the Hamiltonian b)Mleilﬁz SO as
to have as sole parameters the scgitimensionglgravity  and then we diagonalize the finite matrix obtained by trun-
;:2M§|§g/ﬁ2 and again the two ratidsand u; the adimen- cating the basis at suitable values of the indiogsand m,

sional scaled energy will be indicated &s 2M,I2E/#2, the ~ [14. ~ The  matrix  elements (mjmj|H|mm,)
time ast=t//2Ml%, and the adimensional scaled momentum= /3" [5"de:de,® ,  HPp, o, are
1°2

To numerically calculate the energy levels of the Hamil-
nian (3) we project it on the basidDmlm2 given by the
tensor product of the bases for two free rotors:
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|n|, n=0 FIG. 2. Comparison of theoreticgtlash and numerical(full
g(n) = line) adimensional quantum scaled energy vs level number curves.
In|-1, n<o0 q 9y

(i) We confronted thé=wx=1,y=0 level density with the
theoretical value obtained from the third graph in Fig. 3 fol-

~ 1 ) . . I
(mimy|Ulm;my) :3,[(1 + 1) 5m2’mé( 5m1'mi - _(5m1,m1—1 lowing the procgdure given in Sec. IV A. As shown in Fig. 2,
2 the agreement is very good for all the states we have found
above to be reliable.
+ 5m1,m1+1)> + /Jvl(‘smz,mé‘sml,mi (i) Again for u=1=1, the dependence of the ground state

energy fromy approaches for high values gfthe theoretical

1 = o =
- E(aﬂbmé—lanlymi—l one from Eq.(11): Eq o= \¥(2+12) = 1.848/%.
+ 5m2,mé+15m1,mi+1)):|v (9) B. Husimi functions

For many years now, Husimi functiorjd6] have been
widely used when comparing quantum and classical systems,
as they allow us to project quantum functions in phase space
in a way that avoids the interpretation problems connected

){Nith Wigner functions. In Hilbert space, the coherent states
clemens beieen e Siaty=r,-0 and evry basis state = 2,25 S TG 1 eor o e i
(including itsel) are zero, th.us giving zero as an e|genvalueand apart from unnecessary constant phase tgtis
of the system for zero gravity.

When running a simulation on a truncated basis, it is im-
portant to evaluate how many states are a good approxima-
tion to those of the full problem. Our simulations for=|
=1 use|m,|™*=25 (51 levely and |m,|M*=18 (37 levelg
[15]; a test run aty=0 with a doubled basis séB1x 49 is

the best choice in this casshows that 555 IeveISEmax

=145 are practically identical to those calculated on the
smaller basis, giving a total of about 30% of reliable statesHere the variables used are the adimensional quantum scaled

With increasing?y this number decreases, since the lack Ofones,a andfi are the(quantum scaledbhase space coordi-
interaction with the missing states at high energies will pro{,5tes of the center of the packet, amd—the angular mo-
gressively make also the topmost reliable states unreliablenentum width parameter—is a free parameter; good results
On the other hand, since the energy of all levels grows withyre obtained wherr= 1. The normalization is chosen so that

¥, Emax grows at least as the slowest growing state, namelyhe Husimi function of any single rotor eigenstapé“)

where we have separated the kinetic energy tkrand the
potential energy on#J.

1

2 = 2_—
2 e—(l/ZUi )(m, - Li) —I(,Dimi|m_> .
20 32T !

W)=

the ground state which grows &%.
We have performed other two reliability tests @mndering
independentproperties of the system:

=[m| W )| is normalized to 1.
The Husimi function for a double pendulum eigenstate
|®) =2, m,Crnym,IM, My} Will therefore be
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1 e (1/209)(my - L1)2~(1/202)(my = L) 2+i (gymy +gomy) 2, (10)

Aooym° |2m1’mzcml’ M2

pH= |<‘I’¢Tl,~f1,62,f2|q)>2 =

For comparison with the classical Poincaré surfaces of section, we shall here calculate only the Husimi flictarthe
surface(\q, ¢;), whereg,=0 and

~ - 2 2
~ (1+|})|_1+ \/[E_;(1+M+M|)(1_Cosal)]<w>__l
= ©

2- 1+ pw+2ul + ul?

ul?

SO thatg, >0. The number of levels under a given valEef the energy

is therefore

IV. RESULTS = =
E%2 E? |1+p
Now that we have the necessary numerical tools, we can = e = 2_~ - (12
use them to explore the quantum behavior in the three clas- Yo Y
sical regimes which we encounter when increasing the classo that, on one hand, the density of levels is
sical gravity parametey from 0 tooc [9]: regular motion in -
most of the phase spade~0), global chaos regime, and dN E\/l tu_ }\/1 tp (13
regular coupled oscillators regime [y dE ¥ Iy |

>max(1/(2ul),1/[2(1+w)])]. First though | shall make o
some general considerations which will help orientate us irfind, on the other, the number of levels under a given value
the parameter space, and then pass to a detailed analysisafthe classical gravity parametgrgrows linearly withy.
my numerical results. ~ ~
Ne_Y ¥ [1tw
476(10(2 2? I '

o o For free rotors state@=0), it is more difficult to exactly
Energy levels at a givery can be classified in three gygjuate the density of levels, as the second action cannot be
groups according to the character of the classical SOS theyy|cylated analytically. On the other hand, some consider-
correspond to. Starting from the bottom we first havestions can be made: while in coupled harmonic oscillators
“coupled harmonic oscillators stateghigh ), then “cha-  yegime the energy is directly proportional to the scaled ac-
otic” states (medium ), and finally “free rotors” states tjgns n; [see Eq.(11)], in free rotors regime the energy is
(low ). _ proportional to the actions squargsee Eq.(5)]. Since the
For lowy's only few states belong to the first two classes; ,ymper of levels below a given energy is proportional to the
for increasingy, their number grows, but it remains finite for product of the actions, in the latter case it is only linear in
any finite value ofy; the number of free rotors states is energy[as opposed to the quadratic dependence we have in
instead infinite for every value 6. _ the former case: see E(l2)] and the density of states is
For “coupled harmonic oscillators” statéa whose num-  constant. This constant has to be evaluated numerically: to
ber is included the ground statehe energy IeveIEnlynz are  do it we start by plotting the classical scaled actigivs I,
given by the expression =\, thus obtaining the constant energy curve at the classical
scaled energy (that by definition equals)1 We now note
~En1,n2: \@{%(nH%) " a2<n2+ %)] (12) that increasing the energy the graph efpands radially. The

total number of states below a given eneEg'bs therefore the
and therefore grow as the square roofyofin Eq. (11) the  number of couples of quantized actions that can fit in the
frequency factors arf9] area Ag swept by the constant energy curve in its growth

A. Level classification and densities

(L4 )1+ % V/(l 21412 - A(1+ ) from E=0 to E=E or, equivalentE/, tge area swept by a ra-
a12= 2l : dius connecting the points of tHe=E curve to the origin.
Care must be taken to calculate twice the areas swept both by
and the Maslov indices are both 1/2, as each of the twahe outer curvegcorresponding to libration in the second
oscillators has two causti¢i this case the inversion points angleg,) and by the inner onggotation ing,), as regions of
on the paths on which the actions are calculp{édé). phase space corresponding to different classes of motion
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FIG. 3. Energy surfaces in action variable representation. The

plots showl, vs I, at constant energhi=1. The radii indicate the
areas to be calculated to evaluate the density of states.

have different quantum numbef&8]. We now recall the
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gravity parameter

FIG. 4. Quantum scaled energy curves.

density of states remains constant both because of the con-
stant density at=0 (for low ) and because of E¢13) (for
high ).

In terms of physical variables the energy density instead
grows going to the classical limit, due to the relationship
dN/dE:(ZMll"{/hZ)(dN/dE), but this contribution is a uni-
form scale one: it does not alter the level structure.

B. Level interaction and relationship between Husimi functions
and classical SOS fol=u=1

1. Level structure and general considerations

Figure 4 shows the energy curves ®up to 60 andy up

to 10. As expected from our discussion in the previous sec-
tion, we see that the lowest levels—which almost from the
start are in the coupled harmonic oscillators regime—grow

relationship Eq.(5) between classical and quantum scaledas\7y; most of the other levels instead grow at first linearly

actions that here read$=li\rE/2, wheren;=m; andn, are
the quantum numbers at enefgyandl;, i=1, 2 are again the
classical scaled actions; the level densit\/dE therefore

with . This is a consequence of the adiabatic theorem for

noninteracting levels: as the action is approximately con-

stant, the growth in energy of these levels goes as the aver-
age potential energfU)=y(1+u+ul)=3y. Thus the levels

equals half of the area.&, as measured for the classical exhibiting such behavior must lias confirmed by their Hu-

scaled energp=1. Examples are given in Fig. 3.

simi functiong those associated at first with the surviving

In quantum §£:aled variables, the energy of the loweskolmogorov-Arnold-MoserKAM) tori [19] and then with
states grows as7; the energy of the highest states insteadthe island chains with long recurrence times which are lo-
grows linearly with; the net result is a decrease in the cated at the highest values of,| and at|\,|< ~0; in par-

density of states witfy at any given enerng. On the other
hand, when going to the classical linfig— «, y=cons}, the

ticular we shall see that the levels associated with the KAM
tori at the highest values dk,| are very resistant and pre-
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serve the shape of their Husimi functions well into the globalability is divided between the two states of each pair: looking

chaos region, where—if we look at any classical SOS—weat the two¢,=0, (A1, ;) planes(both ¢,>0 and ¢,<0),

see chaos almost everywhere. Only when the growth in erthe Husimi function of then, >0 level of a degenerate pair

ergy of these levels slows down do the Husimi functionshas support on the upper half of the plaig>0) while the

change. Husimi of them; <0 one has support on the lower half. The
On the other hand, the levels associated with resonanasize of the projection on each of the two planes instead de-

islands grow from the start more slowly than the otH&@.  pends on the underlying classical phase space structure: if

Extremgly notlceable.are thg groups of levels a§300|ated Wlﬂlm' < \E we classically have rotation in,; one of the lev-

the main resonance island just below tbe positive branch Is of the pair has therefore support either on e 0

the separatrixA;=12); those starting aE=1.5, 5.5, 12.0, plane or on thep, <0 one, with only a negligible tail on the
21.5, 33.8, and 48.2 are clearly visible in Fig. 4. T/e0  other plane that becomes larger for states whose support is
energy of the lowest level of each group can be obtaine@lose to the sepatatrix; the other level vice versa. If instead
only approximately from Eq(5): due to the energy and~an— |my| > \E, classically we have libration i,; both the de-

gular momentum discretization, we have thef in E  generate functions therefore have significant projections on
=2(my/\y)? is not fixed, it varies—for scaled energies up t0 both the planes. Levels with the samrg but with support
E=140—between 0.81 and 1.21. We thus have for some one ong,>0, the other onp, <0, arenot degenerate.

values two groups of levels, both associated with the main
resonance island: fom;=2 these are at\;=1.20502

(E=5.5 and 0.813 79E=12.0; for m;=3, at\,=0.915 44 _ _ .
For y~ >0 the pairs of levels are still essentially degen-

(E=213 afd 0.730 98(E=33.9; alnd for m;=6, at Ay erate, but the interaction, though small, begins to mix states
=0.916 53(E=85.7) and 0.814 78(E=108.4; note that, ijth different m; quantum numbers; in particular there is
again from Eq(5), the lowest levels within eachn;=const  some flow of probability between states with oppositgs:
series are those at highest again looking at twaquasjdegenerate states, the tail of the
In Fig. 4, the two straight lines ag=1/2ul=1/2 (lower  m, >0 Husimi now also has a component in the lower half of
line) and aty=0.11, where the last invariant torus disappearghe SOS; likewise, the tail of they, <0 Husimi has a com-
[9], (upper ling mark the region of classical global chaos. ponent in the upper half of the SOS. These tails —which for
ThiE global chaos region appears darker than the rest of thgvels 410 and 411 are t=0.025(y=2.3x 1074 already
{¥,E} plane because it is there that thng, —m, degenerate larger than théy=0 ones by five orders of magnitude— re-
levels significantly separate and the resulting high density oflect the appearance of classical libration motiorpirwhen
distinct levels produces multilevel interactions of states cor-y>0; but, since they are due to a probability flow which
responding to different classical resonances. These multilevélappens via tunneling through the unbroken tori aronpd
interactions correspond to the overlap of classical resonance=D, they remain small till the global chaos triangle is reached
and therefore are the quantum mechanical mark of globadnd those tori are broken.
chaos[21]. For v small enough that classical chaos is not yet global,
Two-level interactions can be classified into two types:and the resonance islands still cover most of the phase space
the first one is the splitting of degenerate or near-degeneratey< ~0.1), the widest avoided crossings undergone by the
levels increasingly repelling each other with growiflg  main resonance states are with states having simildsut
which can be locally described by the Demkov mof@H]: a  with the sign changed; no probability flow is visible around
two-level Hamiltonian with constant diagonal terms and off-\;=0, again because of the unbroken KAM tori in that re-
diagonal terms which depend on the perturbaiigrin the  gion; the flow takes instead place betweendhe- 0 Husimi
present cage The second type of level interaction is instead of one state and the, <0 one of the other. Three examples
the avoided crossing, best described by the Landau-Zenare given in Figs. 5-7, together with the classical Poincaré
model[23]: again a two-level Hamiltonian, where now are section for the parameters of the crossing; since the functions
the diagonal terms which depend on the perturbation whil@are symmetric fokp; — —¢4, only half of the SOS is shown;
the off-diagonal terms are constant. the avoided crossings of the other states of each of the de-
Demkov-like level interactions are localized eitherjat generate doublets are identical to those shown.
=0 (interaction of near-degenerate resonance island levels The first exampleFig. 5 shows a very clean avoided
or in the global chaos regiofbreaking of them;, —-m; de-  crossing undergone by the third state of the group of states
generacy. Landau-Zener-like interactions are instead evidentassociated with the main classical resonance originating at
almost everywhere in Fig. 4. Still, the highest density of bothg — 86; the parameters of the crossing place it out of Fig. 4,
splittings and avoided crossings is in the global chaos tripyt it has been chosen because—being at higher energy—
angle, where the splitting of thew, —m, degeneracy also  the Husimi functions are better localized in phase space and
induces a high number of avoided crossings. flows at the crossing can be better recognized. Both levels
being in the central region of the SQ®tation in ¢, for y
=0) the flow is completely perpendicular to tHa, ¢}
At y=0, the levels are all degenerate in paegcept the plane: the two structures grow and fade but do not touch in
m, =0 one$; the chosen basis set then decides how the prolthe plane.

3. Husimi functions at low classical gravity parameter

2. Husimi functions at zero gravity
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FIG. 5. (Color onling An avoided crossing of two levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on the right of the figure. The quantum
gravity parameter increases from top to bottom. For comparison, the classical Poincaré secjief).®t8 88 is superimposed on the

corresponding Husimi function.
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FIG. 6. (Color onling An avoided crossing of three levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on the right of the figure. The quantum
gravity parameter increases from top to bottom. For comparison, the classical Poincaré secjio0.69 787 7 is superimposed on the

corresponding Husimi function.
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FIG. 7. (Color onling An avoided crossing of two levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on top of the figure. The quantum gravity
parameter increases from top to bottom. For comparison, the classical Poincaré sectiof.@8 88 is superimposed on the corresponding
Husimi function.
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The second exampléFig. 6) shows a similar avoided Finally, the third examplgFig. 7) shows the avoided
crossing for the first state of the same grouping; here part ofrossing of three levels, one of them being the first state of
the support of the second functigh) before the crossing is the group of states associated with the main classical reso-
on the unstable fixed point of the principal resonafités nance originating dE = 108.5. Of the other two states, one is
therefore at least in part a “scarred” stf?d]); to the process its symmetric in\; (apparently a scarred state centered on
already seen in the previous example is thus added a visiblae unstable fixed point of the most noticeable resonance in
probability flow between the main resonance island and théhe lower part of the SOSthe other ongthe intervening
scarred portion of the second state. statg is instead a mixture of a scarred state of the period two
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resonance above the principal one with an excited state ofreased it soon leaves the global chaos regjah y
again, the most noticeable resonance in the lower part of the0.075,y is already bigger than 1j3and at first concen-
SOS. Again, even though the support of a state can move tiates on the fixed point just below the center of trel
A1>0 to ;<0 when passing the avoided crossing, all vis-SOS in Fig. 8 of Ref{9]; but when —afy~8— it enters the
ible flow in the{\;,¢;} plane is among structures with the coupled oscillators regimey~ > 2) where the SOS consists
same sign of\;. of concentric curves, it splits in two peaks located\at0
From our study of the Husimi functions accessible to myand ¢, close to the extreme values arcfbs(3y)™1] (in-
simulations in this regime, it appears that level interactionsyersion points of the classical orpifThis reflects what can
which can be described by the Demkov modelel split-  be observed in Fig. 8 of Ref9]: when with increasing the
ting) take place in thg\, ¢;} plane, while interactions to be system leaves the global chaos region, the first regular struc-
described by the Landau-Zener ofavoided crossingtake tures to appear are at the rim of the SOS. Fer >2 both
place perpendicular to it. The first part of the above statethe extreme values af; and the positions i, of the peaks
ment could be expected from what we have already seen-decrease as 1 (or, equivalently;y 1) while the relative
namely that the Demkov transitions are those mixing stategvidth of the peaks reduces.
with different values ofm;—the second part is instead a A similar behavior, but at much higher gravitalready
consequence of the mixing of states with different values othe first excited state leaves the global chaos regioty at

n, by the Landau-Zener transitions. =0.625 and enters the coupled oscillators regimg=a27)
o _ _ _ and, moreover, complicated by avoided crossings which
4. Husimi functions in the global chaos region cause deviations from this pattern at somealues, is ob-

As we have seen, the two processes responsib'e for tr@rved for the Other states W|th IOW quantum numberS.
high density of avoided crossings in the global chaos triangle
are the growth in energy of the low lying states and the
splitting of the #m; degeneracy. Both these processes are not V. CONCLUSIONS AND PROSPECTIVES

associated with the appearance of resonance islands in the | have conducted an extensive study of the dynamics of
{\1,¢1} SOS as these latter are connected with the interaghe quantum double pendulum: even if not exhaustive it has
tion of states with similamll\/E ratios but differentm,| and  allowed us to observe a close correspondence between clas-
n, values. sical and quantum structures in phase space in all three clas-
At such vy values the phase space is mostly taken by theéical regimes: from the free rotors one at low classical grav-
chaotic sea and little remains of the classical resonant strudty parametery to the coupled harmonic oscillators regime at
tures visible at lowery values but many quantum states still high v, all through the global chaos regime for intermediate
have Husimi functions peaked on their stable and unstablgalues ofy. In particular, notwithstanding the persistence of
fixed points. On the other hand, due to the multiple levelsome regular Husimi functions in the global chaos regime,
interactions we have already mentioned, only rarely the Huthe Husimi functions of most of the states in that region are
simi functions of states in this regime are peaked on singlgluite complicated, suggesting that the time evolution of
structures: even away from avoided crossings the support gfuantum packets might simulate rather well the chaotic clas-
most states covers several classical structures, resulting fical evolution, spreading rapidly over most of the phase
rather complicated multipeaked Husimi functions. A few ex-space and remaining for fairly long times in such a state
amples are shown in Figs(éd—8(d). Figures 8e) and §f) before eventually collapsing again in a localized packet, as
instead show another typical shape for Husimi functions irexpected from the well known analysis of REf]. The study
this regime: the probability is concentrated along the bordepf the time evolution of suitably placed minimum uncer-
of the accessible classical region. Here—with the exceptiof@inty packets will be the subject of a forthcoming paper.
of the main resonance island which disappeary=aR.0— Projections of the Husimi functions on other phase space
are the last island chains to be eaten up by the chaotitasea Sections —\1, ¢1) planes forg, # 0 and(\,, ¢,) planes for
y=~1.2) and the first ones to appeéat y~2.5) when with  different values okp;— and investigation of other combina-
increasingy the phase space reverts to regular. tions of the length and mass parameteend x might give
some interesting insight too, especially when compared to

5. Husimi functions at high classical gravity parameter: the case studied here.

Coupled oscillators regime
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